Preliminary communication

THE CRYSTAL STRUCTURE OF $\left[\mathrm{Rh}_{3}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\right.$] AND REACTIONS OF THE UNSATURATED METAL CLUSTERS $\left[\mathbf{M M}_{2}^{\prime}\left(\mu_{3}-\mathbf{C O}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\right]\left(\mathbf{M}=\mathbf{M}^{\prime}=\mathbf{R h} ; \mathbf{M}=\mathbf{C o}\right.$ or $\left.\mathbf{I r}, \mathbf{M}^{\prime}=\mathbf{R h}\right)$ WITH HYDROGEN*

ALVAR C. BRAY, MICHAEL GREEN, DAVID R. HANKEY, JUDITH A.K. HOWARD, OWEN JOHNSON, and F, GORDON A. STONE
Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS (Great Britain)

(Received July 19th, 1984)

Summary

An X-ray crystallographic study of the complex [$\mathrm{Rh}_{3}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}$] has revealed that the CO ligands asymmetrically bridge the Rh_{3} triangle in accord with theoretical predictions. Treatment of the trirhodium compound, or the related mixed-metal complexes [$\mathrm{MRh}_{2}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}$] ($\mathrm{M}=\mathrm{Co}$ or Ir), with hydrogen gas gives the species [$\mathrm{MRh}_{2}(\mu-\mathrm{H})_{2}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)$ -$\left.\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{3}\right]$; the molecular structure of the dihydridotrirhodium cluster has been established by X-ray diffraction.

The unsaturated dimetal compounds 1-5 [1] are known to undergo a variety of interesting reactions, notably in combination with metal-ligand fragments to afford metal clusters [1d,1e,2,3]. Herein we report the synthesis of complex 6, thus completing this family of dimetal compounds. We also describe studies on the trimetal species 7-11.

A mixture of equimolar amounts of $\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ and $\left[\operatorname{Ir}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ in refluxing toluene (1 h) affords red purple crystals of $6(60 \%)$ [4]. We have previously shown [1d] that 2 reacts with the mononuclear metal compounds [$\mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$] ($\mathrm{M}=\mathrm{Co}$ or Rh) to give the trimetal clusters 9 and 10, respectively. Extension of this procedure to reactions between $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]$ and 1 or 4 , and between $\left[\mathrm{Rh}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right.$ (η - $\mathrm{C}_{5} \mathrm{Me}_{5}$)] and 6, affords the complexes 7, 8 and 11 [5].

[^0]

	M	M^{\prime}
$\mathbf{1}$	Co	Co
$\mathbf{2}$	Rh	Rh
$\mathbf{3}$	Ir	Ir
$\mathbf{4}$	Co	Rh
$\mathbf{5}$	Co	Ir
$\mathbf{6}$	Rh	Ir

	M	M^{\prime}	$M^{\prime \prime}$
$\mathbf{7}$	Co	Co	Co
$\mathbf{8}$	Co	Co	Rh
$\mathbf{9}$	Co	Rh	Rh
10	Rh	Rh	Rh
11	Ir	Rh	Rh

Consideration of the bonding in the hypothetical molecule $\left[\mathrm{Rh}_{3}\left(\mu_{3}-\mathrm{CO}\right)_{2}\right.$ -$\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}$] in terms of a combination of frontier orbitals of the fragments $\mathrm{Rh}_{2}(\mu-\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ and $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ has led to the conclusion that the CO ligands would asymmetrically bridge the Rh_{3} triangle in the tricyclopentadienyltrirhodium compound [6]. We were able to test this prediction by an X-ray crystallographic study of the pentamethylcyclopentadienyl compound 10. The structure is shown in Fig. 1 [7]. The results show that the two CO ligands adopt bonding modes intermediate between μ_{2} and μ_{3}, with $\mathrm{C}(1 \mathrm{a})$

c51

Fig. 1. The molecular structure of $\left[\mathrm{Rh}_{3}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\eta-\mathrm{C}_{3} \mathrm{Me}_{5}\right)_{3}\right]$ (10). $\mathbf{R h}(1)-\mathrm{Rh}(2) \mathbf{2 . 5 7 2 (2) , R h (1) -}$ $\operatorname{Rh}(3) 2.553(2), \operatorname{Rh}(2)-\mathrm{Rh}(3) 2.639(2), \operatorname{Rh}(1)-\mathrm{C}(1 \mathrm{a}) 2.32(2), \mathrm{Rh}(2)-\mathrm{C}(1 \mathrm{a}) 1.97(2), \mathrm{Rh}(3)-\mathrm{C}(1 \mathrm{a})$ 1.99(2), $\mathrm{Rh}(1)-\mathrm{C}(1 \mathrm{~b}) 2.37(2), \operatorname{Rh}(2)-\mathrm{C}(1 \mathrm{~b}) 2.02(2), \operatorname{Rh}(3)-\mathrm{C}(1 \mathrm{~b}) 1.96(2) \AA$.
and $\mathrm{C}(1 \mathrm{~b})$ essentially equidistant from $\mathrm{Rh}(2)$ and $\mathrm{Rh}(3)$ and significantly further from $\mathrm{Rh}(1)$ [8]. The uniqueness of $\mathrm{Rh}(1)$ is also reflected in the metal-metal separations with $\operatorname{Rh}(2)-\mathrm{Rh}(3)(2.639(2) \AA)$ being longer than $\mathrm{Rh}(1)-\mathrm{Rh}(2)$ or $\mathrm{Rh}(1)-\mathrm{Rh}(3)$ ($($ mean $) 2.563(2) \AA$). Moreover, the $\mathrm{Rh}(1)-$ $\mathrm{C}_{5} \mathrm{Me}_{5^{\prime}}$ separations are slightly shorter (mean $2.17(2) \AA$) than those between $\mathrm{Rh}(2)$ or $\mathrm{Rh}(3)$ and their respective $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups (mean $2.26(2) \AA$).

Fig. 2, The molecular structure of $\left[\mathrm{Rh}_{3}(\mu-\mathrm{H})_{2}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)\left(\eta-\mathrm{C}_{3} \mathrm{Me}_{3}\right)_{3}\right]$ (12). Atoms labelled with a prime are related to those not so marked by a crystallographic mirror plane which bisects the positionally disordered $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring bonded to $\mathrm{Rh}(2)$ (only one such ring is shown). $\mathrm{Rh}(1)-\mathrm{Rh}(2) 2.785(1), \mathrm{Rh}(1)-$ $\mathrm{Rh}\left(1^{\prime}\right) \mathbf{2 . 6 7 4 (1) , ~ R h (1) - C (1 a) 2 . 1 3 (1) , R h (2) - C (1 a) 1 . 9 9 (1) , ~ R h (1) - C (2 a) 1 . 9 8 (1) ~ A : ~ R h (1) - C (2 a) - ~}$ $O(2 a) 137.5(1)^{\circ}$.

Compound 10 in thf reacts readily with hydrogen gas ($25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$) to give the dihydridotrirhodium complex 12 [9], the molecular structure [7] of which was established by an X-ray diffraction study (Fig. 2). The three rhodium atoms form an isosceles triangle, and whilst one CO ligand remains essentially triply bridging, the other CO group has been displaced to an edge-bridging site so as to accommodate the two hydrido ligands, which were located on the long $R \mathrm{~h}-\mathrm{Rh}$ vectors by a low-angle electron density difference map.

The reaction between hydrogen and the heteronuclear clusters 9 and 11 afforded the isomeric species 13 and 14 , respectively. On warming solutions of these compounds, hydrogen is released and compounds 9 and 11 are regenerated. On the basis of relative peak intensities in the ${ }^{1} \mathrm{H}$ NMR spectra [9], it, was observed that 13a and 13b were formed in the ratio ca. $15 / 85$, and 14 a and 14 b in the ratio ca. $45 / 55$. On the present evidence it is not possible to say whether these are the kinetically or thermodynamically controlled product ratios.

Acknowledgement. We thank the S.E.R.C. for support and B.P. Chemicals (Hull) for C.A.S.E. research studentships (A.C.B. and D.R.H.).

	M	M^{\prime}
12	$R h$	$R h$
$13 a$	$C o$	$R h$
$14 a$	$I r$	$R h$

	M	M
$13 b$	$C o$	$R h$
$14 b$	$I r$	$R h$

References and notes

1 (a) Compound 1, L.M. Cirjak, R.E. Ginsburg, and L.F. Dahl, Inorg. Chem., 21 (1982) 940; W.I. Bailey, D.M. Collins, F.A. Cotton, J.C. Baldwin, and W.C. Kaska, J. Organomet. Chem., 165 (1979) 373; (b) Compound 2, A. Nutton and P.M. Maitlis, ibid., 166 (1979) C21; (c) Compound 3, W.A.G. Graham and J.K. Hoyano, unpublished work; (d) Compound 4, M. Green, D.R. Hankey, J.A.K. Howard. P. Louca, and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1983) 757; (e) Compound 5. W.A. Herrmann, C.E. Barnes, R. Serrano, and B. Koumbouris, J. Organomet. Chem., 256 (1983) C30.
2 (a) N.M. Boag, M. Green, R.M. Mills, G.N. Pain, F.G.A. Stone, and P. Woodward, J. Chem. Soc., Chem. Commun., (1980) 1171 ; (b) M. Green, R.M. Mills, G.N. Pain, F.G.A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., (1982) 1309; (c) M. Green, J.A.K. Howard, G.N. Pain, and F.G.A. Stone, ibid., (1982) 1327 ; (d) M.L. Aldridge, M. Green, J.A.K. Howard, G.N. Pain, S.J. Porter, F.G.A. Stone, and P. Woodward, ibid., (1982) 1333; (e) R.D. Barr, M. Green, K. Marsden, F.G.A. Stone, and P. Woodward, ibid., (1983) 507.

3 L.M. Cirjak, J-S. Huang, Z-H. Zhu, and L.F. Dahl, J. Am. Chem. Soc., 102 (1980) 6626.
4 Selected spectroscopic data for 6: $\nu_{\max }(\mathrm{CO})$ at $1713 \mathrm{~cm}^{-1}$ (PhMe). NMR: ${ }^{1} \mathrm{H}$ (in $\mathrm{C}_{6} \mathrm{D}_{6}$ for all complexes reported), $\delta 1.46\left(\mathrm{~d}_{4} 15 \mathrm{H}, \mathrm{RhC}_{3} \mathrm{Me}_{5}, J(\mathrm{RhH}) 0.5 \mathrm{~Hz}\right)$, and $1.65\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{IrC}_{5} \mathrm{Me}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ (in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ for all complexes reported), $\delta 239.8$ ($\mathrm{d}, \mathrm{CO}, J(\mathrm{RhC}) 48 \mathrm{~Hz}$), 96.6 ($\mathrm{IrC}_{5} \mathrm{Me}_{5}$), 100.6 (d, $\left.\mathrm{RhC}_{5} \mathrm{Me}_{5}, J(\mathrm{RhC}) 7 \mathrm{~Hz}\right), 9.1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$, and $8.5 \mathrm{ppm}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$.
5 Selected spectroscopic data: Compound 7, $\nu_{\max }(\mathrm{CO}) 1675 \mathrm{~cm}^{-1}$ (thf). NMR: ${ }^{1}{ }^{\mathrm{H}}, \delta 3.38$ ($\mathrm{s}, 45 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{5}$); Compound $8, \nu_{\text {max }}(\mathrm{CO}) 1677 \mathrm{~cm}^{-1}$ (thf). NMR: ${ }^{1} \mathrm{H}, \delta 0.98$ ($\mathrm{s}, 15 \mathrm{H}, \mathrm{RhC}_{5} \mathrm{Me}_{5}$), and $1.95\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{CoC}_{5} \mathrm{Me}_{5}\right){ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 94.6\left(\mathrm{~d}, \mathrm{RhC}_{5} \mathrm{Me}_{5}, J(\mathrm{RhC}) 6 \mathrm{~Hz}\right), 94.3\left(\mathrm{CoC}_{5} \mathrm{Me}_{5}\right), 11.1$ ($\mathrm{RhC}_{5} \mathrm{Me}_{5}$), and $9.8 \mathrm{ppm}\left(\mathrm{CoC}_{5} \mathrm{Me}_{5}\right.$); Compound 11, $\nu_{\max }(\mathrm{CO}) 1661 \mathrm{~cm}^{-1}$ (PhMe). NMR: ${ }^{1} \mathrm{H}, \delta 1.63$ ($\mathrm{d}, 30 \mathrm{H}, \mathrm{RhC}_{5} \mathrm{Me}_{5}, J(\mathrm{RhH}) 0.5 \mathrm{~Hz}$), and $2.08\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{IrC}_{5} \mathrm{Me}_{5}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 94.9\left(\mathrm{~d}, \mathrm{Rh} C_{5} \mathrm{Me}_{5}\right.$, $J\left(\mathrm{RhC}^{2} \mathbf{~} \mathbf{H z}\right.$), $94.4\left(\mathrm{IrC}_{5} \mathrm{Me}_{5}\right.$), 10.4 ($\mathrm{RhC}_{5} \mathrm{Me}_{5}$), and $9.5 \mathrm{ppm}\left(\mathrm{IrC}_{5} \mathrm{Me}_{3}\right.$).
6 A.R. Pinhas, T.A. Albright, P. Hofmann, and R. Hoffmann, Helv. Chim. Acta, 63 (1980) 29.
7 For 10, crystal data. $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Rh}_{71} M=770.4$, orthorhombic, space group Pbca (no. 61), a 17.85(4), $b 21.85(1) A, c 15.45(1), U 6028 \AA^{3}, Z=8, D_{x} 1.70 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=3104, \mathrm{Mo}-K_{\alpha}$ (graphite monochromator) $\lambda 0.71069 \mathrm{~A}, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 16.2 \mathrm{~cm}^{-1}$. Current $R=0.05$ ($R_{\mathbf{w}}=0.05$) for 2067 absorptioncorrected intensities ($293 \mathrm{~K} . \omega$ scans, $2 \theta \leqslant 50^{\circ}, F \geqslant 4 \sigma(F)$, Nicolet P 3 m diffractometer. For 12. $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{Rh}_{3}, M=772.5$, orthorhombic, space group Pnam (no. 62 non-standard setting), a 12.029(3), $b 13.403(3), c 19.031(5) \AA, U 3068(1) \AA^{3}, Z=4, D_{\mathrm{x}} 1.68 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1560, \mu\left(\mathrm{Mo}-K_{\alpha}\right)$ $15.96 \mathrm{~cm}^{-1}$. Current $R=0.043\left(R_{\mathrm{w}}=0.047\right)$ for 3221 absorption corrected intensities, 200 K , $2 \theta \leqslant 60^{\circ}, F \geqslant 5 \sigma(F)$.
The atomic coordinates for this work are avallable on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain). Any request should be accompanied by the full literature citation for this communication.
8 Using the terminology of ref. 6, the dihedral angles (θ) between the $\operatorname{Rh}(1) \operatorname{Rh}(2) \operatorname{Rh}(3)$ plane and the two $\mathrm{Rh}(2) \mathrm{Rh}(3) \mathrm{C}(1)$ planes in 10 are 75.6 and 77.5°, respectively, compared with $\theta 90^{\circ}$ for an unsymmetrical trimer and $\theta 60^{\circ}$ for a symmetrical trimer. Calculations [6] suggest $\theta 65^{\circ}$ for a structure
of optimum minimal energy, with transformation between this geometry and that with $\theta 60^{\circ}$ requiring an energy change of $10 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. It is not surprising, therefore, that varlable temperature ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies [1d] reveal that 10 adopts the symmetrical structure even at $-80^{\circ} \mathrm{C}$.
9 Selected spectroscopic data: Compound 12, $\nu_{\max }$ (CO) 1762 and $1634 \mathrm{~cm}^{-1}$ (thf). NMR: ${ }^{1} \mathrm{H}, \delta$ -21.60 (d of d, $2 \mathrm{H}, \mu-\mathrm{H}, J(\mathrm{RhC}) 28$ and 20 Hz), 1.73 (s, $30 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$), and 1.83 ($\mathrm{s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 245.2$ (d of $\mathrm{t}, \mu_{3}-\mathrm{CO}, J(\mathrm{RhC}) 39$ and 26 Hz), $237.5(\mathrm{t}, \mu-\mathrm{CO}, J(\mathrm{RhC}) 41 \mathrm{~Hz}), 101.7$ $\left(C_{5} \mathrm{Me}_{5}\right), 98.5\left(\mathrm{~d}, \mathrm{C}_{5} \mathrm{Me}_{5}, J(\mathrm{RhC}) 6 \mathrm{~Hz}\right), 11.1\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right.$), and $9.6 \mathrm{ppm}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$. Compound 13a, NMR: ${ }^{1} \mathrm{H}, \delta-25.54\left(\mathrm{~d}, 2 \mathrm{H}, J(\mathrm{RhH}) 32 \mathrm{~Hz}\right.$), $1.69\left(\mathrm{~s}, 30 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), and $1.80\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$). Compound 13 b , NMR: ${ }^{1} \mathrm{H}, \delta-26.33$ ($\mathrm{d}, 1 \mathrm{H}, \mu$ - $\mathrm{HCoRh}, J(\mathrm{RhH}) 20.8 \mathrm{~Hz}$), -22.90 (d of d, $1 \mathrm{H}, \mu$ - $\mathrm{HRh}_{2}, J(\mathrm{RhH})$ 31 and 21 IIz), $1.60\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), 1.71 ($\mathrm{s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$), and 1.80 ($\mathrm{s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$). Compound 14a, NMR: ${ }^{1} \mathrm{H}, \delta-21.67$ (d, $2 \mathrm{H}, \mu$-HIrRh, $J(\mathrm{RhH}) 27 \mathrm{~Hz}$), 1.88 (br, $15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$), and 1.76 ($\mathrm{s}, 30 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$): Compound 14b, NMR: ${ }^{1} \mathrm{H}, \delta-22.4$ (d, $1 \mathrm{H}, \mu$ - $\mathrm{HIRRh}, J(\mathrm{RhH}) 21 \mathrm{~Hz}$), $-21.21(\mathrm{~d}$ of d, $1 \mathrm{H}, \mu-\mathrm{HRh}_{2}, J(\mathrm{RhH}) 32$ and 21 Hz), $1.88\left(\mathrm{br}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), $1.78\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right.$), and 1.77 ($\mathrm{s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$).

JOURNAL OF ORGANOMETALLIC CHEMISTRY, VOL. 281, NO. 2

AUTHOR INDEX

Barnes, C.L., C1
Bray, A.C., C12
Dory, T.S., C1, C8
Ebsworth, E.A.V., 63
Erdik, E., 15
Green, M., C12
Hankey, D. R., C12
Howard, J.A.K., C12
Huntley, C.M., 63
Hurst, G.D., 15
Jesthi, P.K., 15
Johnson, O., C12
Kiwan, A.M., 111
Kunze, U.R., 79
Lauteschläger, S., 25, 33

Maire, J.C., 45
Majumdar, D., 15
Matteson, D.S., 15
Müller, G., 25, 33
Peterson, M.L., 15
Rankin, D.W.H., 63
Rausch, M.D., C8
Ray, R., 15
Riess, J.G., 1
Roesky, H.W., 69
Sadhu, K.M., 15
Schmidbaur, H., 25, 33
Schumann, H., 95
Seyferth, D., 111
Sinn, E., 111
Stone, F.G.A., C12
Tsai, D.J.S., 15
Zuckerman, J.J., C1, C8

[^0]: * Presented in part at the International Symposium on "New Vistas in Organometallic Chemistry" sponsored by INSA held at Jaipur (India), March 1984.

